GReAT Ideas follow-up

On June 17, we hosted our first “GReAT Ideas. Powered by SAS” session, in which several experts from our Global Research and Analysis Team shared insights into APTs and threat actors, attribution, and hunting IoT threats.

Sadly, the two hours of the session were not enough for answering all of the questions raised, therefore we try to answer them below. Thanks to everyone who participated, and we appreciate all the feedback and ideas!

  • How do you see Stonedrill deployment comparing now? Its discovery was based on lucky structural similarities with Shamoon, but do you see it actively used or correlating to the spread of this malware?

    There is some 2020 activity that looks like it could be Stonedrill related, but, in all likelihood, it is not. We are digging through details and trying to make sense of the data. Regardless, wiper activity in the Middle East region from late 2019 into early 2020 deployed code dissimilar to Stonedrill but more similar to Shamoon wipers. We stuck with the name “Dustman” – it implemented the Eldos ElRawDsk drivers. Its spread did not seem Stonedrill related.

    At the same time, no, the Stonedrill discovery was not based on luck. And, there are multiple overlaps between Shamoon 2.0 and Stonedrill that you may review under “Download full report” in ‘From Shamoon to StoneDrill‘ blogpost. You might note that Stonedrill is a somewhat more refined and complex code, used minimally.

    While the Shamoon spreader shared equivalent code with Orangeworm’s Kwampirs spreader, and are closely linked, we have not seen the same level of similarity with Stonedrill. However, several of the Shamoon 2.0 executables share quite a few unique genotypes with both Stonedrill and Kwampirs. In the above paper, we conclude that Stonedrill and Shamoon are most likely spread by two separate groups with aligned interests for reasons explained in the report PDF. Also, it may be that some of the codebase, or some of the resources providing the malware, are shared.

  • Do the authors of Shamoon watch these talks?

    Perhaps. We know that not only do offensive actors and criminals attempt to reverse-engineer and evade our technologies, but they attempt to attack and manipulate them over time. Attending a talk or downloading a video later is probably of interest to any group.

  • Are there any hacker-for-hire groups that are at the top level? How many hacker-for-hire groups do you see? Are there any hacker-for-hire groups coming out of the West?

    Yes. There are very capable and experienced hack-for-hire groups that have operated for years. We do not publicly report on all of them, but some come up in the news every now and then. At the beginning of 2019, Reuters reported insightful content on a top-level mercenary group and their Project Raven in the Middle East, for example. Their coordination, technical sophistication and agile capabilities were all advanced. In addition to the reported challenges facing the Project Raven group, some of these mercenaries may be made up of a real global mix of resources, presenting moral and ethical challenges.

  • I assume Sofacy watches these presentations. Has their resistance to this analysis changed over time?

    Again, perhaps they do watch. In all likelihood, what we call “Sofacy” is paying attention to our research and reporting like all the other players.

    Sofacy is an interesting case as far as their resistance to analysis: their main backdoor, SPLM/CHOPSTICK/X-Agent, was modular and changed a bit over the course of several years, but much of that code remained the same. Every executable they pushed included a modified custom encryption algorithm to hide away configuration data if it was collected. So, they were selectively resistant to analysis. Other malware of theirs, X-Tunnel, was re-coded in .Net, but fundamentally, it is the same malware. They rotated through other malware that seems to have been phased out and may be re-used at some point.

    They are a prolific and highly active APT. They added completely new downloaders and other new malware to their set. They put large efforts into non-executable-based efforts like various credential harvesting techniques. So, they have always been somewhat resistant to analysis, but frequently leave hints in infrastructure and code across all those efforts.

    Zebrocy, a subset of Sofacy, pushed malware with frequent changes by recoding their malware in multiple languages, but often maintain similar or the same functionality over the course of releases and re-releases. This redevelopment in new and often uncommon languages can be an issue, but something familiar will give it away.

  • Have we seen a trend for target countries to pick up and use tools/zero-days/techniques from their aggressors? Like, is Iran more likely to use Israeli code, and vice versa?

    For the most part, no, we don’t see groups repurposing code potentially only known to their adversary and firing it right back at them, likely because the adversary knows how to, and probably is going to watch for blowback.

    Tangentially, code reuse isn’t really a trend, because offensive groups have always picked up code and techniques from their adversaries, whether or not these are financially motivated cybercriminal groups or APT. And while we have mentioned groups “returning fire” in the past, like Hellsing returning spear-phish on the Naikon APT, a better example of code appropriation is VictorianSambuca or Bemstour. We talked about it at our T3 gathering in Cancun in October. It was malware containing an interesting zero-day exploit that was collected, re-purposed, touched up and re-deployed by APT3, HoneyMyte and others. But as far as we know, the VictorianSambuca package was picked up and used against targets other than its creator.

    Also, somewhere in the Darkhotel/Lazarus malware sets, there may be some code blowback, but those details haven’t yet been hammered out. So, it does happen here and there, maybe out of necessity, maybe to leave a calling card and shout-out, or to confuse matters.

  • If using API-style programming makes it easier to update malware, why don’t more threat actors use it?

    I think here we are talking about Microcin last-stage trojan exported function callbacks. Nobody could tell for sure, but from my point of view, it’s a matter of the programmer’s experience. The “senior” one takes a lot into consideration during development, including architectural approach, which could make maintenance easier in the future.

    The “junior” one just solves the trojan’s main tasks: spying capabilities, adds some anti-detection, anti-analysis tricks, and it’s done. So maybe if the author has “normal” programming experience, he carefully planned data structures, software architecture. Seems like not all of the actors have developers like that.

  • Have you seen proxying/tunneling implants using IOTs for APT operations, such as the use of SNMP by CloudAtlas? Do you think that’s a new way to penetrate company networks? Have you ever encountered such cases?

    We watched the massive Mirai botnets for a couple years, waiting to see an APT takeover or repurposing, and we didn’t find evidence that it happened. Aside from that, yes, APT are known to have tunneled through a variety of IOT to reach their intended targets. IOT devices like security web cams and their associated network requirements need to be hardened and reviewed, as their network connections may lead to an unintended exposure of internal resources.

    With elections around the world going on, municipalities and government agencies contracting with IT companies need to verify attack surface hardening and understand that everything, from their Internet-connected parking meters to connected light bulbs, can be part of a targeted attack, or be misused as a part of an incident.

  • How often do you see steganography like this being used by other actors? Any other examples?

    Steganography isn’t used exclusively by the SixLittleMonkeys actor for sure. We could also mention here such malware as NetTraveller, Triton, Shamoon, Enfal, etc. So, generally, we could say the percentage of steganography usage among all the malicious samples is quite low, but it happens from time to time.

    The main reason to use it from malefactors’ point of view is to conceal not just the data itself but the fact that data is being uploaded or downloaded. E.g. it could help to bypass deep packet inspection (DPI) systems, which is relevant for corporate security perimeters. Use of steganography may also help bypass security checks by anti-APT products, if the latter cannot process all image files.

  • If you want to join our honeypot project, please get in touch with us at

    We are not afraid of tough questions; therefore, we did not filter out the following ones.

    We hope you find these answers useful. The next series of the GReAT Ideas. Powered by SAS webinars, where we will share more of our insights and research, will take place on July 22. You can register for the event here:

    As we promised, some of the best questions asked during the webinar will be awarded with a prize from the GReAT Team. The winning questions are:
    “Are there any hacker for hire groups that are at the very top level? How many hackers-for-hire groups do you see? Are there any hacker for hire groups coming out of the west?”
    “Can you expand on how you identify a genotype and determine that it is unique?”

    We will contact those who submitted these questions shortly.

    Feel free to follow us on Twitter and other social networks for updates, and feel free to reach out to us to discuss interesting topics.