A Boeing Code Leak Exposes Security Flaws Deep In a 787’s Guts

An anonymous reader quotes a report from Wired: Late one night last September, security researcher Ruben Santamarta sat in his home office in Madrid and partook in some creative googling, searching for technical documents related to his years-long obsession: the cybersecurity of airplanes. He was surprised to discover a fully unprotected server on Boeing’s network, seemingly full of code designed to run on the company’s giant 737 and 787 passenger jets, left publicly accessible and open to anyone who found it. So he downloaded everything he could see. Now, nearly a year later, Santamarta claims that leaked code has led him to something unprecedented: security flaws in one of the 787 Dreamliner’s components, deep in the plane’s multi-tiered network. He suggests that for a hacker, exploiting those bugs could represent one step in a multistage attack that starts in the plane’s in-flight entertainment system and extends to highly protected, safety-critical systems like flight controls and sensors.

At the Black Hat security conference today in Las Vegas, Santamarta, a researcher for security firm IOActive, plans to present his findings, including the details of multiple serious security flaws in the code for a component of the 787 known as a Crew Information Service/Maintenance System. The CIS/MS is responsible for applications like maintenance systems and the so-called electronic flight bag, a collection of navigation documents and manuals used by pilots. Santamarta says he found a slew of memory corruption vulnerabilities in that CIS/MS, and he claims that a hacker could use those flaws as a foothold inside a restricted part of a plane’s network. An attacker could potentially pivot, Santamarta says, from the in-flight entertainment system to the CIS/MS to send commands to far more sensitive components that control the plane’s safety-critical systems, including its engine, brakes, and sensors. Boeing maintains that other security barriers in the 787’s network architecture would make that progression impossible.

Boeing said in a statement that it had investigated IOActive’s claims and concluded that they don’t represent any real threat of a cyberattack. “IOActive’s scenarios cannot affect any critical or essential airplane system and do not describe a way for remote attackers to access important 787 systems like the avionics system,” the company’s statement reads. “IOActive reviewed only one part of the 787 network using rudimentary tools, and had no access to the larger system or working environments. IOActive chose to ignore our verified results and limitations in its research, and instead made provocative statements as if they had access to and analyzed the working system. While we appreciate responsible engagement from independent cybersecurity researchers, we’re disappointed in IOActive’s irresponsible presentation.”

Boeing says the company put an actual Boeing 787 in “flight mode” to test and try to exploit the vulnerabilities. They found that they couldn’t carry out a successful attack.